Flatness of tracer clouds

نویسندگان

  • James P. Gleeson
  • Dale I. Pullin
چکیده

The average concentration of a passive scalar advected from a point source by a multivariate normal velocity field is shown to deviate from a Gaussian profile. The flatness (kurtosis) is calculated using an asymptotic series expansion valid for velocity fields with short correlation times or weak space dependence. An explicit formula for the excess flatness at first order demonstrates maximum deviation from a Gaussian profile at time t of the order of five times the velocity correlation time, with a t−1 decay to the Gaussian profile at large times. Monotonically decaying forms of the time correlation function are shown to yield negative values for the first order excess flatness, but positive values can result when the correlation function has an oscillatory tail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flatness of tracer density profile produced by a point source in turbulence

The average concentration of tracers advected from a point source by a multivariate normal velocity field is shown to deviate from a Gaussian profile. The flatness ~kurtosis! is calculated using an asymptotic series expansion valid for velocity fields with short correlation times or weak space dependence. An explicit formula for the excess flatness at first order demonstrates maximum deviation ...

متن کامل

3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method

Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...

متن کامل

Every class of $S$-acts having a flatness property is closed under directed colimits

Let $S$ be a monoid. In this paper, we prove every class of $S$-acts having a flatness property is closed underdirected colimits, it extends some known results. Furthermore thisresult implies that every $S$-act has a flatness cover if and only if it has a flatness precover.

متن کامل

Properties of products for flatness in the category of $S$-posets

This paper is devoted to the study of products of classes of right $S$-posets possessing one of the flatness properties and preservation of such properties under products. Specifically, we characterize a pomonoid $S$ over which its nonempty products as right $S$-posets satisfy some known flatness properties. Generalizing this results, we investigate products of right $S$-posets satisfying Condi...

متن کامل

Subpullbacks and Po-flatness Properties of S-posets

In (Golchin A. and Rezaei P., Subpullbacks and flatness properties of S-posets. Comm. Algebra. 37: 1995-2007 (2009)) study was initiated of flatness properties of right -posets  over a pomonoid  that can be described by surjectivity of  corresponding to certain (sub)pullback diagrams and new properties such as  and  were discovered. In this article first of all we describe po-flatness propertie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002